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feature closely parallels the staggered conformation adopted by
The sulfonamide antibiotics hold the prestigious position of a-sulfonyl carbanions (se&), where the lone pair orbital is
being the first synthetic compounds to have had utility in human likewise gauche to the two oxygens that are engaged in contact
therapy! These exciting developments spawned considerable ion-pairing to the metal io2 4 It is not clear, at this point, if
interest in their use in veterinary practice and in the preparation changes in the orientation of the nitrogen lone pair relative to
of many hundreds of cyclic variants (i.e., sultarhsih recent the O-S—0 internuclear angle will translate into altered reactiv-
years, reagents containing the important sultam functionality as ity. This intriguing structural question could be addressed by the
a key structural feature have emerged. Representative examplesynthesis of small bridgehead sultams. Our expectations are that
include Davis's stereoselective oxidizing ag#sitthe N-acyl and such molecules will be very weak bases, comparable to aliphatic
N-enoyl derivatives of 10,2-camphorsultar@) (developed by congeners? and may exhibit a chemical robustness appreciably
Oppolzert and Differding’s saccharin-based electrophilic fluori- greater than that of their carbonyl analogues. A direct synthetic
nating agenB.® entry to title compounds offering the structural features given by
6—10 is recorded herein.
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Despite the extent of attention accorded this class of com-
pounds, the literature holds no report of any small bridgehead

bicyclic sultam. The few carbonyl analogues (lactams) that are  The gperational strategy was based on the expectation that the
knowrf are highly prone to hydrolys&The angle strain and  fiye- and six-membered heterocyclic subunits would prove
enforced torsional distortion, which combine to orient the amenable to generation by free radical cyclization (Scheme 1).
nonboned nitrogen lone pair orthogonal to the@z-bond and  Wwhile 5exoregioselectivity as il 1is adopted with widespread
inhibit resonance interaction, contribute to this uncharacteristic facility in many hexenyl system$,other observations suggested
reactivity. With amide resonance energy amounting te-2% that 12 should respond in parallel @ofashion!’ Furthermore,
kcal/mol depending on structufeand N-C=O overlap being although displacement reactions arhalosulfonyl compounds
subject to a cod relationshig it is obvious that energy costs  4re generally not feasible for steric and stereoelectronic red&ons,
rise steeply as resonance interaction is progressively curtailed ing;ch compounds are amenable to efficient conversion into reactive
lactams. electrophilic radicals. Sinae-sulfonyl radicals are not stabilizéd,

The corresponding situation M,N-disubstituted sulfonamides  they should be prone to rapid intramolecular cyclizag®n.
is much less clear. Their stabilization is derived quite differently.

A search of the Cambridge Crystallographic Data Base for this Scheme 1
compound class furnished more than 200 examples for which

coordinates are availableAlthough the—SO,NR, types ranged &9 10

from cyclic to cycloaromatic and from amide to amidine, with ﬂ ﬂ

resultant notable differences in the geometry at i, decided

preference for orienting the nitrogen lone pair in the bisector of

the O-S—O0 internuclear angle as i is seen. This structural ‘onsozNIE%)" SO
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Scheme 2 Table 1. Products of Free Radical Cyclization of
P A~ Halomethylsulfonamidés$
XCH,S0,X  + HN — XCHZSOZN\/\
X = Cl. Br \/\ DMAP, CHaClp X compd reduction prod (%) cyclization prod (%)
B 13a, X = CI (82%)
H2N/\/ b, X = Br (69%) /b
ANF BrCH2S02N o
BrCH,SO,NH DEAD, PhsP \(\%\ o}
THF, toluene 20 (74) 21 (0)
14 (48%) 15a,n =2 (87%)
b, n=3 (93%)
c,n=4 (99%)
PN 19e crsson] ) Oes@ + O\\SCN
=z OH B " 11
BrCH,SONH, - -5 acrsond TS ° ©
DEAD, PhsP NS 2 (47) 6 (16) 9 (7)
16 THF, toluene 17 (52%)
RUCl,(=CHPh)(PCys), N /3
— "= BrCH,S0
CH,,Cly, 40-50 °C a2 19 CHgSOZO O°SCN
i
18 (98%) o}
23 (12) 7 (69)

RuCl,(=CHPh)(PCya)
13,15 ———— > XCH2S0N, |
CH,Cl,, 40-50 °C . =
19 19e  CH,SO,N 0. /N
(

a:n=1,X=Cl(98%) c: n=2,X-Br (96%) &
b: n=1,X=Br(95%) d: n=23, X = Br (98%) 24 (49) 8 (37)
e: n=4,X=Br (53%;cis/trans 6.5:1)
A salient feature of the present plan is the ready availability 18 CHSSOZO O“s”"&
of CICH,SO,CI?' and BrCHSO,Br?? by halogenation ofs- i
trithiane under aqueous conditions. Admixture of these reagents 25 (10) 10 (79)

with diallylamine in CHCI, containing Huig’'s base and DMAP
generated.3a and 13b, respectively (Scheme 2). Subjection of 2 Reaction conditions: By$nH, AIBN, GHs, 60°C, syringe pump.
14 to Mitsunobu alkylatio®? involving terminal alkenols led in "AII_ compounds exhibited spectra fully compatible with the indicated
high yield to 15a—c. Comparable treatment of the know6? assignment.

with 3-buten-1-ol provided 7. Ring-closing metathesfsof all of affairs is manifested wit8 and 19d, which undergo ring
the doubly unsaturated sulfonamides proceeded smoothly andgjosyre to givel0 and7, respectively, in preparatively attractive
efficiently in the presence of the Grubbs catelyso give 18 yields. The drop-off in ring-forming efficiency observed f8r
and19. . o . . . was not entirely expected. The prominent workability of thexé-
While the heating ol 9awith tri-n-butyltin hydride (1.2 equiv)  pathway involvingl2 could represent a useful feasibility calibra-
and AIBN (_0.07 equw) in be;nzene under syringe pump conditions tjgn point.
resulted simply in reductive dehalogenation (Table 1), more  The crystal structure of the smallest bicyclic sultam available
fruitful results emerged from the comparable handling of the tg ys has been determined by single-crystal diffraction analysis.
higher homologued8 and 19c-e. The elevated strain energy  several features of this molecule are of interest. The cyclohexane
resident in bridgehead sulta?i was expected to deter the ring  sypstructure is not impeded by the sulfonyl group from adopting
closure step leading to its formation. Indeed, none of this product g chairlike conformation. Also, the exo and endo orientations of
was seen. In the case @Bc cyclization begins to exhibit the  the two oxygens are well defined. More significantly, although
capacity to compete at a reasonable level with reduction. the N lone pair electrons on the bridgehead nitrogen cannot be
Interestingly, both the [3.2.1] and [2.2.2] bicyclic sultams are |ocated exactly, proper approximations indicate them to be

generated, the latter product stemming frorerloC—C bond  projected in a plane that bisects the-8-0 angle into very
formation. Their relative ratio is 2.2:1. The most favorable state yneven sectors. The values ar80° and 40. Thus, the geometry
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